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Abstract

The _minimum uncertainty and other relations are evaluated in the framework of the
coherent states of the damped harmonic oscillator. It is shown that the coherent states of
the damped harmonic oscillator are the squeezed coherent states of the simple harmonic

oscillator. The unitary operator is also constructed, that connects coherent states between
damped harmonic and simple harmonic oscillators.

1 Introduction

Recently there has been a surge of interest in the minimum uncertainty state which is one of the

fundamental features of quantum mechanics[l]. Introducing the canonical conjugate variables for

the harmonic oscillator, position z and momentum p in the appropriate dimensionless units, the

coherent states can he described by a symmetric uncertainty in z and p with Ap. Ax --- 1 and

Ax = Ap = 1. From the restriction of the uncertainty principle, Az. Ap, we may consider a more
precise position 'Ax < 1 and a more uncertain momentum Ap > 1. These states, i.e., one variable

is squeezed at the expense of its conjugate, are called squeezed states or minimum uncertainty

states, which can not be obtained from the optical sources generating the coherent states[2], but
from two-photon coherent states[3] including ordinary coherent states as a special case. This kind
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of change in the variable corresponds to the measurement of either z or p in a rotating frame in
phase space. This new space is the quadrature phase, that is directly related with a homodyne or

heterodyne detection. Recently, two-photon devices have produced the squeezed states of light[4]

with high precision interferometers[5].

The two-photon coherent states or minimum uncertainty can be distinguished from a coherent

state in many ways, i.e., different photon processes, quantum statistical properties and coherence

properties. The coherent state can be generated from one-photon stimulated processes, while the

two-photon coherent states are generated from two-photon processes for two photons of the same
mode. For the photon annihilation operator with frequency _, we may define the coherent states

[ a > (a I e >= e I a >), and for the case of a two-photon process, a self-adjoint operator

a =- aa + ia2 yields < Aa_ >=< Aa] >-- I/4 for the coherent state I a >, as derived in Sec. 3
below. However, the states with a more precise quantity < Aa_ >_ I/4 and a more uncertain

< Aa_ >_ I/4 are permitted by the uncertainty < Aa_ >< Aa_ >_ 1/16 with minimum

uncertainty < Aa_ >< Aa_ >ffi 1/16. This indicates that the ordinary coherent states are
different from the minimum uncertainty.

The purpose of this paper is to show that our previous results[6] of the coherent states for
the damped harmonic oscillator (DHO) are the squeezed states of simple harmonic oscillator

(SHO). Introducing the Ca]dirola-Kanai Hami]tonian [7], we review the propagator, wave function,
• 4 •uncertainty relatlon and coherent states[8] of the Caldirola-Kanai Hamiltonian in Sec. 2. In Sec.

3 we define the self-adjoint operator and construct the coherent states for DHO. We determine the

properties and structure of the unitary transformation of the coherent states of DHO and SHO in
Sec. 4. The results and discussion will be given in sec. 5 together with graphs.

2 Propagator and Wave Function of DHO

We introduce the Ca]dirola-Kanai Hamiltonian for DHO as

_ p2 ._tlrr_2 2
_=e _+o : 'o_ , (:)

where 7 is the positive constant. As we have developed the quantum theory or damped driven

harmonic oscillator by the path integral method[8], the propagator and wave function of DHO are

given as

[ ]1;2 im -2= L2- sTn, t
2_

(2)+ sin_t((x2e'_+z_)cos_t- _"

N [-i(n 1 cot_,(_.2_ + cotwt) Az 2] (3)• ,_(z,t)-(2,,_.),12H,_(Dz)exp + :) - ,

where

(taJ " 4--
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c-_ J

2

--_ sin 2_t 1 ,_(t) _ = _sin 2tot+ +

2h_(t) 2 1 + i + sin 2

(-7)'"D(t) = --.
¢(t)

(4)

To construct the coherent states ([ o >) for DHO, we define the annihilation operator a and
creation operator at as

where/_(t) and r/(t) are

1

o = _(,I_- .p), (5)
I .

at = _(p p___-z), (6)

Equations.

The coherent states in the coordinate representation I x > can be expressed by

[ 1 _2 a 1 12 Ip'a, ]•
<zla>=(21tpp') -'/4expL-2--_z +--z/z -_ta -_'_- j

/_(t) = _(ReA)-l/2exp{icot-' (_+cottot)} , (7)

A 1 cot tot) .

(5)-(6) satisfy the commutation relation [a, a t] = 1, which corresponds to [z,p] = i_.

With the use of Eqs. (5)-(8) the uncertainty relation can be easily obtained as

(9)

(10)

= I_, II _ I-- _(t)

- _ 1+ _+ sin stot+_-isin_t

(AzAp)

Here, Eq. (10) is the minimum uncertainty corresponding to the (0,0) states. All of the formulas

derived above reduce to those of simple harmonic oscillator ($HO) when "r ffi 0. The propagator

[Eq. (2)] has a very similar form to those of Cheng[9] and others[10], but gq. (3) is of a new form.

3 Two-Dimensional Self-Adjoint Operators

We introduce the dimensionless two self-adjoint operators

a =_al + ia2, al = .I, a_ = ._ (11)
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and the corresponding eigenstates

Io >=I _, >, +i I_2 >2, (12)

where _I and au are real We refer to (al, a2) or (al, a2) as the quadrature components, and the

re]ationbetween Zqs. ill)and (12)are givenby

al ] orl >1 =

G2 ] Q2 >2 -"

(13)

Using Eqs. (5)-(6)we may expressEq. (II)as

___[(q _ rl°)x + (t_° - #)p], (14)ai

2_[-(W + _')x + (p +/_°)p] . (15)112

Rewriting Eqs. (14) and (15) as the representation of z and iv, we get

x = (u + u')a_ - i(u - _')a2, (16)
P = (7 + T/°)al - i(T/- r/°)au . (17)

With the use of the wave function expressed as Eq. (3) and through the following definition

< A,_ >,.,.=< (.,- < a, >,.,.)(al- < .1 >,.,.)" >,.,., (18)

we obtain the uncertainty relations at various states as

< Aa_ >.+2,.< Aa_ >n+2,.

< Aa_ >.+_,. < ,',a_ >.+1,.

< Aa_ >.,.< Aa._ >.,.

< _._ >.-1,.< A._ >.-1,.

< A._ >._=,.< Aal >._=,.

= _(. + 2)(. + 1) "" 1---'_ 8 '

= (n+l)=_ I--6"

= (2.+ I)=_-_I-_'

I =____

-- -"*8

Averages in the coherent states can be defined as

<ala]a>=<a>=a)

(19)

(20)

(2_)

(22)

(23)

(24)

and thus we have
1

<al >= _(a+a')=al ,

i .
< a2 >= :(a - _) = a=,

z-

(25)

(26)
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; (27)<_;_]> = _+_,

(2s)<_;_,> = _]+_,
1

<Aa_> ffi<Aa]>=4, (29)

and the following al representation

i
/'2_TM [_(a_ _ a)2 + _cllma]<al la>= k_) exp

where al I _1 >- a_ Is >.

(30)

4 Unitary Transformation

Now we willconstructthe unitaryoperatorthattransformsthe coherentstatesforSHO to that

of the two-photon coherent state of DHO and t'ice versa. From Eqs. (5)-(6), we can easily show
the relation

a = vao-Aaot , (31)
at = -A'ao+ v'a0 t , (32)

where the expressions of ao and at by a and a t are

ao

4

for a pair of numbers A and u satisfying

lul=-l_t2=].

We take the values of v and A as the following:

- u'a+ Aa t , (33)

-- A'a+ va t , (34)

(35)

V_fi Iu = F--iV___._T I

l /-_"_[_e-" [icot-I 2w+= _-_v:e t: + (] -i_)] exp (3' cos_t)]

11 _T°e__(3,sin_ot cos_t) ,/'_-_e_(coswt 7 ]- + - _V _ _ sin_t) (36)

- V=e (_--_smwt

: +
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_/rnwo 1

=_ v_

2_ [-_-e - 2 + _2 1/2 exp + += - 2,. _'-_-_,: i "

Since a canonical transformation is defined as any transformation which keeps the commutator

invariant, we can confirm that the tr_nsform&tion of variables from (ao, at) to (a, a t) given in F.,qs.

(31)-(32) and (35) is a canonical linear transformation. According to a theorem of Von Neuman-

n[11], there exists a unitary operator Ua which yields all the linear canonical transformations,

i.e.,

=uooou.t= oo-  38)
relation[,[a,at] 1]The commutation , -

properties exactly similar to those of ao.

N ffi

NIn> ffi

In> ----

and unitarytransformation[Eq. (38)]provide a with

Therefore,we may obtainthe usualpropertiesofa as

ata, (39)

n In >, N [0 >= 0, (40)

uo In >o, (41)

and a coherentstateforDHO isgivenby

Io>= Uo I_ >o, (42)

where [a >0 isa coherentstatesforSHO. The representationofcoherentstatesforDHO in the

SHO spaceisgivenby

[2 2-_. A 1 ] (43)1 i_ 1 i_ _°_ _"<olo>o=_..exp- I_ -_Ioo + - + o'oo,

where the coefficientsare

1

(2+ + '
tan-' [ (_sin_t-I-coswt)v/'_-Z--f+(_ee.e-'a÷._ 1)sinuJt ]

I.(_ + _ sin_t + cos_t)(_e-'a + 1)- sin_tx/_ _ - 1J '

2v---_ = -_\wo2e_-----_+2wwo_/ exp itan-' 2__-_--(-_)2e_,,, , (44)
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A

2v"

1
m ,---

F"

The wave function < n [ a > for a coherent state of DHO in the state of SHO can be obtained

from Eq. (43). Using the following formula with the nth Hermite polynomial,

e'"-" = ]C z)t", It I< oo, (45)
v'_mO

and through the similax derivation of Eq. (9), we can easily obtain

0<n[o>

= 2v'_f,(_-,'+2+_/9 ) 2_,o+

× H-[(-2_'_)-lno]exp(- 2 I_, I' _" '-_o, ), (46)

where the coefficients in Eq. (46) are given as

A,,A

B_A

[1 _e-" + 2 + _/92)(_e-_ - 2 + /92) e_o.

= tan-I _+sin_ot

_/(_e-_),+ I-/9,- 2_e-"+ ,](_,-,'+ I)'+ I-/9'
B_,A 'J

(_--'e-¢w + 1)(_--'e-'_-w 1)- (_---e-"_ + l)'_/(?e-'*- 11' + 1 -/9'

-(_---e -'a + 1) ,qrt(_---e -'t - 1)' + 1 -/9'

+_/[(?e -_a - 1)' + 1 -/9'][(_"°---e-" + 11' + 1 -/9'1.
u)

(47)

If we represent the annihilation operator ao in the state of DHO, we get

< ao >-< e [ o0 [ a >= v'e + Aa" - aa] + i¢_a_, (48)

from the definition of Eq. (18) we obtain the quantities

< Aa02] > = <_1(-o1-_,)21a>

1 12= 7 I,,+,_

WI_O0 [ 22_ I_,

= 1__ _,,_2
4_

(49)
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] ?<Aao22> = _-I_,-,X
1

- I,iI 2
2rn_/t

= 1 __.e"_ 8_.2
4_0o _ '

1 2
< :'a_o,>< a_2 >= i_/_,

< Aao2 > = I,X?

2_ e-_ 2 + 8 2

t/s

The repetition of representation for the annihilation operator a in the state of SHO yields

<a>0 = <aoialao>=uao--Aa_--ah=ahl+icrh2,

(50)

(5])

(52)

(53)

< Aa_ >o

< Aal >o

= < _o I (a, - _,,)21 "o >,
1

= _ I_"-AI

= _ -_--_ sin_.,t+--e_ (cos_t- _ sina_t) 2

1

=
]

4

Iv*+,x I

e-'_( sin,ot + cos _ot)2 + _----e"t sin 2_ot(_ + 1)

(54)

(55)

< Aa_ >o< A_] >o = ll[_----e-'(7----sin_ot+ cosvt)2
]6tL_ 2_

-a 7 7 s
+ --e (cos_t - sing.,t)( + 1)sinai] 2

3,2
+ [cos2_t- _--_sin_ot]s},

(r_)

< Aa 2 >o = i A 12

] ._ -_, _ 8_)_
= _t_. - 2+ _o-- " (57)

In Eq. (42) we have defined the unitary operator that is a linear canonical transformation.

From this equation we have

<aol_> - <,_olULISo>

= U7.(_,%) < ao I_ > (fs)
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A directapplicationof the following formulas[12]

1

e'"e_'e°'c = exp(clA + c,B + c_C + _{c,c_[A, B] + clcs[A, C1 + c,c_[B, C]}

' ' e44.
+ _'_-,iA'[Af""[A;IB'IB;":'[B'C]'"](i + l)!(j + 1)!

i=l jffil

(59)

e_. _ e_.t.e_. _ = exp{cla ta + oaata + esa 2 - (at a + ata + aa t + aa)

= (-2jp.
+ _ "(']_-_.t-2c, cs(0]0 + oat) + SE_e,ae]}

j::!

e 2e+ -- ] e -+e=- ]

= exp[(c.,.-8c_c, _ c,c,)aP(c+-c,c++ 2c, c3 _c; )ata

e -+_ - 1

+(-c, c3+ 2c,c3 _; )..* + (c, - c2c_).'1

gives the unitary operator in the [ o >0 representation,

UL(.), .,
t ao, co)

where the coefficients are

1 [_., 1, )," _1

1 [A 1_ A'_2]= ._.-_exp _--._uO,o-lnvatoa.o - _'uaoJ

= _I exp [AI, aPo + B.atoao + C.ooato + D.e._]

2 1-,,'A. = 2--_+_vlnv+_ _v _v lnv

B_ = -Inv-_ 1 v2)21nv( - ,

C,, = _.z,u__(] _ ,,2),
21nv

D_ = _(1-v2).
21n v'

(60)

(61)

(62)

(63)

(64)

5 Results and Discussion

Starting from the coherent states of DHO, we have shown that these states are the squeezed states
of SHO and vice versa. We have also evaluated the averages of the operators ao, a, Aa_ and Aa]

in both spaces of DH0 and SH0. We have constructed the unitary operator which transforms the
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FIG. 1. /3(t) as a funtion ofwt at various values ofz = 7/o:.

coherent states (Ia >0) to the coherent states ( la >), i.e.,[a >'- Us la >0.

Figure I illustratesthe behavior of _(t) [Eq. (I0)] as a function of t and x = -y/w. As x

increases,the amplitude of the oscillationbecomes large. For the condition "f,#_wo, w _ w0 and

"f---*0, _(t) approaches to unity,with DHO reducing to SHO. Therefore, the uncertainty relation

for the (n,n) state [Eq. (I0)]oscillateswith the period _r.

From the definitionof the selfadjoint operator and Eq. (18),we have evaluated the minimum

uncertainty for various statesin Eqs. (19)-(23).The minimum uncertainties for the diagonM and

firstoff-diagonalstates have the value of 1/16, and the minimum values for the second off-diagonal

statesare I/8. For < Aal >_ i/4, the corresponding canonical part resultsin more uncertainty.

The creation and annihilationoperators (atand a) in Sec. 4 can be shown under the condition

]_ [2_ IA [2= I.The operators (a_,a0) are transformed to the operators (at,a) through unitary

operator Us. The behaviors of [u [ and I A [ are depicted in Figures 2 and 3, respectively. We

can confirm that Iu [oscillatesperiodicallyin general, but ]A [behaves in a more complicated

fashion, and as z = -f/w increasesto largerthan unity,the oscillationdecays rapidly.

The average of Aa_1 and Aa022 in the states of DHO are given in Eqs. (49)-(50). < Aa_l >

oscillateswith exponential decrease, while < Aa_2 > does so with exponential increase. The

minimum value of < Aa02] >< Aa022 > is 1/16 at _(t) = I. The averages of Aal and Aa] in the

space of SHO are evaluated in Eqs. (54)-(55).The uncertainty relation [Eq. (56)]has a minimum

value of 1/16 at t = sin -1 nTr or t = cos-l('y/2w-4w/_f), and maximum value at 82 = (¢ao/w)2e -2_t

(Figure 4).

Equations (61)-(63) represent the unitary operator which transforms l a >0 to l a > and vice

versa. Therefore, we can obtain the scaled state through < x I a >=< ar I U I a >0.

In conclusion, we have shown the uncertainties and their relations in the states of SHO and
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FIG. 2. I v I versus _t _t v'4rious values of 7/w.
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FIG. 3. I A I versus_t at variousvMues of "r/_.
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FIG. 4. Uncertzinty relations versus wt.

DHO. We have also shown that there exists a unitary operator to connect the coherent states of
SHO with those of DHO.
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